-
所有魔方都從 1 開始。
四階魔方由1-64組成。 (4*4*4)
-
一般為四階魔方]。
什麼樣的 16 個數字可以組成乙個四階魔方? 四組任意數,只要每組四個數的差值相同,就可以用拉丁方塊組成乙個四階魔方。 以下是該模型的四階拉丁方塊的數字猜測:
示例:<>
四階完美魔方]。
如果陣列滿足a+b=c,x+y=z,即a=c-b,x=z-y,即行間差、行間差、列間差、列間差,其陣列可以組成乙個完美的尖峰魔方。 如下圖所示,這是乙個示例
乙個完美的魔方是,不僅行、列和兩條對角線的總和等於魔術和,而且平行於對角線的泛對角線之和也等於魔術和。 想象一下,像平鋪瓷磚一樣平鋪魔方塊,然後取任何 4 或 4 個方塊就是乙個魔方。
1-16 是上述陣列的特例,即 16 個數字是相等不同的數字,從 1 開始相差 1。
可以形成四階完美魔方的陣列,可以通過[順序編號,中心點對稱數字交換]的方法完成。 如下圖所示:
-
總結。 在這個問題中,數字 1 到 16 用四階魔方填充得到 34,而不是 25,因為將 1 到 16 的數字相加是 136,136 4=34,1 所以 1 到 1。 數字 16 填充四階魔方,是 34
在這個問題中,數字 1 到 16 是 34,而不是 25,數字是 136,因為數字是從 1 到 16 相加,136 = 34,1 所以 1 到帆組。 16 的數字是 34
有1、2、3、3**。 可以實現 1 和 3,或 1 和 2。
-
因為:1+9=2+8=3+7=4+6=10;
根據以上條件,填寫並調整備份檔案,得到三階魔方孝擒滾爐,其魔和為15。
八個三階魔方中的任何乙個都可以適當地反轉和旋轉以獲得其他七個。
-
三階魔方是最簡單的魔方,又稱九方格,是由1、2、3、4、5、6、7、8、9的九個數字(如右圖)組成的三行三列矩陣,其對角線、水平和縱向之和為15, 這個最簡單的魔方的魔術總和是 15。中心數量為5個。
奇階魔方通用構造方法公式:
1.在上行**,依次斜填不要忘記,在邊框邊寫下來,右邊出框時左邊,在下邊格重複補,出角重複乙個樣。
說明如下:1.在第一行中間的正方形中放入1,並填寫...;
2.如果要放在這個數字中的網格已經超過了頂行,那就把它放在底行,仍然放在右列;
3.如果要放在這個數字中的網格已經超過了最右邊的列,那麼把它放在最左邊的列中,仍然放在上一行;
4.如果右上角有數字和對角線,請向下移動乙個方格以繼續填充。
5.您也可以在魔方中相應位置填寫魔方中的相應數字。
例如,如果 1 是第一行的中間,則在最後一行的中間填寫相應的 9。 2 依此類推。
這樣,如果你做映象或旋轉對稱,你可以得到同樣的其他填充方法:只需將 1 放在四個變格的中間,然後將其餘的數字沿對角線填充到魔方的外側; 如果它不在一側,請將數字轉到另一側; 如果目標網格中已經有數字或角,請一步填寫數字,然後在開始時沿同一方向繼續沿對角線填充剩餘的數字。
談判不一定要妥協,比如,如果你家想要很多彩禮,你們可以商量一下,互相幫一手,沒必要強迫一方妥協。 畢竟,結婚是一件幸福的事情,如果你變得僵硬,那就不好看了。
A 的伴隨矩陣。
相同。 對角矩陣(表示為 m)的伴隨矩陣,類似於 a。 >>>More
解決方案:第乙個問題實際上是乙個簡單的主函式。 將費用設定為 $y。 方案 A:y=(2+..)即 y = >>>More
當然,燃燒是一種產生熱量並發光的化學反應過程。 通常,它是指產生熱量並發光的劇烈氧化反應。 可燃物只有在空氣或氧氣中達到燃點時才能燃燒。 >>>More