判別定理代數

發布 教育 2024-08-06
6個回答
  1. 匿名使用者2024-02-15

    首先,從二次方程 b 2-4ac δ判別式中,我們得到:

    25+4(m^2-1)

    21+4m^2 >0

    從尋根公式中,我們得到 a=x1 5+ (21 4m 2) 2 ,顯然是 a>0

    b=x2=〔5-√(21+4m^2)〕/2

    如果,5 (21 4m2) 則 b 0,則。

    a + b = 5 滿足 6 個條件。

    此時,5(21 4m 2),所以解得到-1m 1

    如果,5 (21 4m2) 則 b<0,此時為 m<-1 或 m>1。

    a+b=(21 4m 2) 6、溶液。

    15/4)≤ m ≤√15/4)

    也就是說,m 的取值範圍為: - 15 4) m <-1 或 1 在上述兩種情況下,m 的取值範圍為 - 15 4) m 15 4)。

    注:(21 4 m2)表示(21 4 m2)的平方根。

    4m 2 表示 m 平方乘以 4

    15 4) 表示 15/4 的平方根。

  2. 匿名使用者2024-02-14

    x^2-5/2)^2=m^2-21/4

    有兩個實根,所以 m 2-21 4>=0....1)x^2-5x-(m^2-1)=0

    x=(5+or-root(25+4(m2-1))) 2 因為 (1) 所以 |a|+|b|= 根數 4m 2 = 21m 2> = 15 4....2)

    m 範圍由 (1) 和 (2) 獲得。

  3. 匿名使用者2024-02-13

    比較複雜,所以我不會回答,對不起。

  4. 匿名使用者2024-02-12

    首先,二次方程的判別式δ b 2-4ac

    得到:25+4(m 2-1)。

    21+4m^2

    它是由尋根公式得到的。

    a=x1 5+ (21 4m2) 2 顯然是 a>0

    b=x2 禪凳差 5 (21 4m 2) 2 如果,5 (21 4m 2) 那麼。

    b 0,因此。

    a│+│b│=5

    滿足條件。 在這個時候。

    5 (21 4m2),所以。

    解決方案。 1≤m≤1

    如果,5(21 4m2)那麼。

    B<0、M<-1 或 M>1

    俞苦松是。 a+b=(21 4m 2) 6、溶液。

    M 赫皮 (15, 4).

    也就是說,m 的值範圍為: - 15 4) m

    或。 1.基於以上兩種情況,m的取值範圍如下。

    m注:(21 4m2)表示(21 4m2)的平方根。

    4m 2 表示 m 平方乘以 4

    15 4) 表示 15/4 的平方根。

  5. 匿名使用者2024-02-11

    7a³-3(2a³b-a²b-a³)+6a³b-3a²b)-(10a³-3)

    7a³-6a³b+3a²b+3a³+6a³b-3a²b-10a³+3

    7+3-10)a³+(6-6)a³b+(3-3)a²b+3=0+0+0+3

    3 多項式的值與 a 或 b 無關,所以她的陳述是有道理的。

  6. 匿名使用者2024-02-10

    是的,原始配方。

    7a³+3a³-10a³)+6a³b+6a³b)+(3a²b-3a²b)+3

    3 與 a、b 的值無關。

相關回答
12個回答2024-08-06

解:設方程的兩個整數根分別為 x1 和 x2,不妨設定 x1 x2 所以原來的方程可以寫成:(x-x1)(x-x2)=0 得到 x 2-(x1+x2)x+x1x2=0 >>>More

10個回答2024-08-06

9盒蜜蜂一年能生產多少蜂蜜?

6個回答2024-08-06

從理論上講,我最喜歡這個圓圈。

3個回答2024-08-06

我剛從初中畢業。

我在高中入學考試中物理考了61分。 (滿分 70 分)。 >>>More

2個回答2024-08-06

公司理想和信念的例子如下:

1、英國著名作家查爾斯·狄更斯平時非常注重觀察和體驗生活,無論颳風下雨,他都堅持每天上街觀察、傾聽、背誦行人的點點滴滴,積累豐富的生活素材。 就這樣,他在《大衛·科波菲爾》中寫出了精彩的人物對話,在《雙城記》中留下了對社會背景的現實描寫,從而成為英國文學英雄,在文學生涯上取得了巨大的成功。 >>>More