-
1.設每分鐘進水管為x,出水管為y每分鐘,出水管比進水管晚t分鐘開啟; 從標題的含義來看:
xt+8x-2*8y=0,……1) xt+5x-3*5y=0,……2)
將以上兩個公式均質化為x:y形式,並將它們合併得到16(8+t)=x:y=15(5+t);
可以求解:t=40;
2.汽車的總產量為x; 一般情況下:小排量汽車產量為30%x,大中排量汽車產量為70%x;
生產結構調整後,大中排量汽車產量為90%*(70%x)=63%x,總產量為(1+,因此小排量汽車產量為;
小排量汽車產量與正常情況相比的增幅百分比為:(
為了便於理解,第二個問題寫得更詳細)。
-
1.由於三個出水口相同,同時開啟三個出水口相當於將進水管中的水排出 3 分鐘,而不是同時開啟兩個出水口。 可以看出,出水管5分鐘排出的水相當於進水管3分鐘內排出的水。
因此,如果同時開啟2個出水管,8分鐘排出的水相當於幾分鐘進水管中的進水口。
也就是說,出水管比進水管晚一分鐘開啟。
2.如果原來的總產量是1,那麼目前的總產量是正常條件下小排量汽車的產量,大中排量汽車的產量是。
現在結構調整好了,大中排量汽車的產量是。
小排量汽車的產量是。
與正常情況相比,小排量汽車的產量有所增加(
-
1. 設定大桶 x 和小桶 y
則 x+y=20
4x-2y=8;
同時兩個可以非常解除武裝x=8;y=12
2. A、B 和 C 各有 x、y 和 z 齒。
則 5x=7y=2z;
顯然,xyz 是乙個整數,可以選擇 2
57 的最小公倍數是 70=5x=7y=2z,所以 x=14,y=10,z=35;是最小解決方案。
-
分數等於 25 等於 5 除以 6 等於 12 等於 36 等於 35 除以 what。
18=25 ()=5 6=() 12=() 36=35 ()讓 (a) 18=25 (b)=5 6=(c) 12=(d) 36=35 (e)。
則 a=18x5 6=15, b=25 (5 6)=30
c=12x5/6=10
d=36x5/6=30
e=35÷(5/6)=42\
那麼 (15) 18=25 (30)=5 6=(10) 12=(30) 36=35 (42)2,
A 除以 b 等於 c,a 和 b 的最大公因數是 (,最小公倍數是 ( ),則 b a=c
b = 交流,所以 a 和 b
最大的公因數是 。
a,最小公倍數是 b
-
1.解:連線EG,由於四條組成線是平分線,因此角度均為45度,四邊形EFGH為矩形。
三角形 AFD 是乙個等邊直角三角形。
所以af=fd;
三角形 AEB 是乙個等邊直角三角形。
所以ae=eb;
分別擴充套件 CH、AF 和 AD
西元前在P,Q中; 那麼四邊形 APCQ 是平行四邊形;
所以ap=cq; 所以 bq=dp;
所以三角形 beq 與三角形 dgp 全等;
所以ae=be=dg;
和 af=fd;
所以 ef=fg; 證明。
2.解:設單位速度為 x
km/min;
小花的速度是3倍,小兵的速度是4倍
列方程有。 6/3x=10/4x-10
解決方案 x=20
km/min
那麼小花的速度就是了。
60km/min
蠕變速度最小為80km。
-
1.首先,EFGH的四個角是直角,其次,由於對稱性,EH=HG,所以四邊形EFGH是乙個正方形。
2.設小華和爬行的速度是3x,4x,那麼6(3x)+10=10(4x),解是x=,所以小花爬行的速度是,公里每分鐘。
-
因為它是 4 個角平分線。
所以有。 afd
aebbch
CGD 是等腰直角三角形。
因此,EFGH 是矩形的,AFD 和 BHC 是全等的。
AEB 和 CGD 一致性。
所以 hg=ch-cg=df-dg=gf
因此,EFGH是乙個正方形,而小華的速度是3V
km h 有。
6/3v+1/6=10/4v
v=1 3,所以小華的速度是 1km h
蠕變速度為 3 4 km h
-
1.假設第一季度的總銷售額為100,則A型的銷售額為56,B+C的銷售額為54
Q2:A型 56*(1+23%) B+C 是 54*(1-a%) 合計:100*(1+12%)
然後 56*(1+23%)+54*(1-a%)=100*(1+12%)。 答案似乎是 2
當然,您也可以將第一季度的總銷售額設定為x,但這有點麻煩!
2.當鉚釘進入裝置部分的長度足夠時,第一次是2cm,第二次是1cm,第三次是,問題的要求是兩次的效果不能完全進入裝置,三次的效果必須全部進入裝置, 所以鉚釘的總長度在前兩次和前三次所需的長度之間。和 1+2+>=a>1+2
房東得到了獎勵!
-
找專家,我路過醬油製造商。
-
一、125 和 50 的最大公因數是 25
二、最大公因數是40,可分成40份,每份太妃糖8份,豆漿3份蘋果4份
-
第乙個問題是種12棵樹,長邊5棵5x2=10,寬邊3棵樹2x3=6,10+6=16,然後減去有重複角的四棵樹。
第二個問題是 40 份禮物,每份有 8 個太妃糖、3 瓶豆漿和 4 個蘋果。
-
1.現在,一塊長125公尺、寬50公尺的長方形土地將種植在他的四個角落及其周圍,以便每棵相鄰的兩棵樹之間的距離相等。 應該種多少棵樹?
在具有相同數量的樹和線段的閉合圖上種植一棵樹。 125 和 50 的最大公約數是 25,圖形的周長是 (125+50) 2=350 公尺,至少 350 25=14 節課。
-
1 攜帶至少 66 棵樹。
2 最多 40 分,每份 8 個太妃糖,3 瓶豆漿,4 個蘋果。
1. 通過 -2 x 1 有:0 x+2、x-1 0所以。
y=1-x-2|x|+x+2=3-2|x|可以看出,當x的絕對值較大時,y越小,x的絕對值越小,y越大。 >>>More
解:這個問題可以簡化為 sinb-sinc=2sina(根數 3sinc) sinb=sin(180-a-c)=sin(a+c)sin(a+c)-sinc=sinacosc-根數 3sinasinccosasinc-sinc=-根數 3sinasincsinina 不等於 0 >>>More