-
這是乙個看似簡單的問題,但很多人都嘗試過,但都未能找到答案。 於是,一群大學生寫信給當時只有20歲的偉大數學家尤拉,請他分析一下。 從成千上萬人的失敗中,尤拉以深刻的洞察力推測,如果不重複,可能不可能一次走完所有七座橋。
為了證明這個猜想是正確的,尤拉用簡單的幾何來表示陸地和橋梁。 他是這樣解決問題的:既然陸地是橋梁的連線點,不如把圖中被河流分隔的土地看作是A、B、C、D四個點,七座橋表示為連線這四點的七條線,如圖“七座橋連線線”所示。
將七橋連線線的簡化圖,再簡化成圖表,就變成了右邊的“七橋連線簡化圖”。 在討論尤拉的推理之前,我們先談談偶點和奇點的問題。 奇偶點圖 什麼是偶數點?
乙個點是偶數條邊。 下面“奇偶點圖”的 a、b、e 和 f 點。 相反,如果乙個點有奇數條邊,它就是乙個奇點。
尤拉認為,如果一幅畫可以一筆畫出來,那麼就一定有乙個起點和乙個終點。 地圖上的其他點是“交叉點”——當你畫它們時,你必須穿過它們。 “過境點”的特點是什麼?
它應該是乙個“進出”的點,如果有邊緣進入這個點,那麼這個點一定有乙個邊緣,不可能沒有進入和沒有出口或沒有進入和退出。 如果只有進而沒有出,那就是結束; 如果沒有進入或退出,那就是起點。 因此,進出交叉點的邊總數應為偶數,即交叉點為偶數。
如果起點和終點是同乙個點,那麼它也是乙個“進出”的點,所以它必須是乙個偶數點,這樣圖上的所有點都是偶數點。 如果起點和終點不是同乙個點,那麼它們一定是奇點,所以這個圖最多只能有兩個奇點。 綜上所述,簡單如下:
一筆畫的形狀只有兩種:一種是所有的點都是偶數。 另一種型別是只有兩個奇點的圖。
現在對比七橋問題的圖,我們回過頭來看圖3,A、B、C、D四點都是用三條邊連線起來的,都是奇數邊,總共有四條,所以這張圖不能一筆畫出來。 尤拉對“七橋問題”的研究是圖論研究的開端,同時也為拓撲學的研究提供了主要範例。 其實,這種一筆畫遊戲在中國民間流傳了很久,從長期的實踐經驗中,人們知道,如果畫面的所有點都是偶數點,就可以選擇乙個點作為起點,一筆畫出來。
如果是有兩個奇點的圖形,那麼選擇乙個奇點作為起點,一鍵順利完成。 如果你不相信,可以試試上圖中的“奇偶點圖”,選擇C和D兩個奇點畫出來,一定能一筆畫出來。 只可惜,長期以來,人們只把它當成一種有趣的遊戲,沒有關注它,也沒有數學家對其進行總結和研究,這不得不說是一種遺憾。
d%a
-
要麼太難,要麼太麻煩和懶惰。
-
山羊比綿羊多七分之三(綿羊數量)x 七分之三=(山羊數量多於綿羊)。
綿羊數量 x (1+3 7) = 山羊數量。
-
93 2=186 表示 6 頭牛和 16 隻羊總共吃了 186 公斤草,186-165 是 6 頭牛和 16 隻羊吃的草減去 5 頭牛和 15 隻羊吃的草,這是一頭牛和乙隻羊一天吃的草!
-
你已經非常仔細地回答了這個問題,但是為什麼你使用 93 2=186 然後使用 186-165?
-
3 頭牛和 8 隻羊吃 93 公斤草,93x2=186 是 6 頭牛和 16 隻羊吃的草。 186-165是牛和羊吃的草。
-
兩個量之間,乙個量(變化),另乙個量也跟著(變化),它們都是兩個量相關的,只要兩個量,(除法關係),比率(當然)是比例關係。
兩個相關的量,乙個膨脹,另乙個收縮(乘法關係),只要它們的乘積(當然)成反比。
加法或減法關係,不成比例。
-
兩個量之間的乙個量增加,另乙個量也增加,它們是兩個相關的量,只要有兩個量,(除法關係),比率(當然)是成正比的嗎?
沒錯。 兩個相關的量在乙個量上增加,在另乙個量上減少(乘法關係),只要它們的乘積(肯定)成反比,這是真的嗎?
沒錯。 那麼,如果是加法或減法關係,那是什麼關係呢?
如果是加法或減法關係,則不成比例。
-
乙個量隨另乙個量變化,據說這兩個量是相關的量,比如考試臨近時壓力很大,呵呵。
如果兩個量的乘積是恆定的,那麼其中乙個量會變小,另乙個會變大,或者隨著它變小而變大,那麼我們說它們是反比的。
如果兩個量的商是固定的,那麼其中乙個量會隨著另乙個量的增加而變大,或者隨著另乙個量的增加而變小,我們說它們是成比例的。
加法或減法關係,不成比例。
-
第一種說同倍數的膨脹不成正比,第二種不說膨脹和收縮的倍數相同,如果是加法或減法,則不成正比或成反比。
-
前兩個是正確的,最後乙個加法和減法是不成比例的。
-
意思差不多,但不夠準確,你必須具體看一下這個概念。
-
第乙個答案:(240+360)8=600 8=75,所以他應該在一小時內處理75個零件。
第二個答案:蘋果總重量=110 30=3300公斤; 第一類占用6(6+3+2)=6 11,重量=3300 6 11=1800公斤; 二等佔3 11,重量=3300 3 11=900公斤; 第三類佔2 11,重量=3300 2 11=600公斤。 感謝您領養
-
另外,如果今生想要修煉成功,去極樂世界,可以參考YouTube上景空大師的【金剛經講義】
-
袋子 A 給袋子 B 5 公斤,表明它們原來是 5 2 = 10 (kg) A 是 6 5-1 = 1 5 比袋子 B 多
對應的數量除以對應的分數,10 1 5 = 50 (kg) 這是單位“1”——B 的重量,然後找到袋子 A 為 50 6 5 = 60 (kg) 知道了,多給點! 這是小學成績的重點。 第一單元想通了。
-
假設 A 的原始重量為 6 公斤,B 重 5 公斤,則 6 -5 = 5 + 5,所以 = 10,所以 A 重 60 公斤,B 重 50 公斤。
-
A 比 B 多 6 5-1 = 1 5
A 比 B 多 5 2 = 10 公斤。
袋裝大公尺重 10 1 5 = 50 公斤。
一袋大公尺重 50 + 10 = 60 公斤。
-
裝甲袋:(6 5-1) 2 = 1 10 5 (1 10) = 50
乙:50 5*6=60
對不起,電腦看不懂,馬馬虎虎打出來,希望,謝謝。
-
解決方案:如果袋裝A大公尺×kg,則袋裝B袋大公尺5-6kg。
x-5=5/6x
x-5/6x=5
1/6x=5
x=30
-
B袋:5 2 (6 5 1) = 50 (kg)。
裝甲袋:50 6 5 = 60(kg)。
中國老師布置了作業嗎?
這些東西並不難寫。 你可以寫乙個最近發生的事件,不必談論你的感受,但它可以突出你在這所學校五年中形成的模式。 不要寫那些讓人感覺自己要離開的字,而且非常懷舊。 >>>More